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Stochastic master-equation approach to aggregation in freeway traffic
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In analogy to the usual aggregation phenomena, such as the formation of liquid droplets in a supersaturated
vapor, the nucleation, growth, and condensation of car clusters are considered in a one-lane freeway traffic flow
model. The clustering behaviknown as congestigrin an initially homogeneous traffic stream is described
by a master equation. The construction of the stochastic equation is given as well as its relationship to other
dynamical models. Numerical experiments in heavy traffic with well-explained transition probabilities show
the transition from the initial free particle situatidfree jet of vehiclesto the final congested cluster state,
where one big aggregate of cars is formed. The results are presented analytically in dependence of the stable
cluster size from car concentration and numerically as stochastic trajecf@i€63-651X97)05109-X

PACS numbes): 02.50.Ey, 05.70.Fh, 89.48k

I. INTRODUCTION lane traffic with lane changing, different kinds of vehigles
[10]. A description in terms of lattice rules also permits a
Fluid-dynamical approaches to traffic flow were devel-discussion of critical phenomena of traffic-jam formation.
oped long ago starting in the 1950s by Lighthill and The system self-organizes in such a way that the outflow
Whitham. Since the pioneering work of Prigogine and Her-from a large car cluster is a critical state of maximum
man[1] on the kinetic theory of vehicular traffic, cars have throughput. Numerical results and phenomelogical theory
been considered as interacting particles. Depending on tHeased on random walks show that slow perturbations in the
number of cars on the rodthe density of cajsbound states outflow of a big car cluster lead downstream to traffic jams
(so-called car clustersnay become possible. If the density is of all sizes. The creation of gmergen.t car clusters in a driven,
small the free flow of nearly noninteracting particles is domi-randomly perturbed system is a particulary good example for
nant. The flux rate increases linearly with the density. If thecriticality [15-17.
density of cars exceeds some critical value a jamming tran- The aggregation of particle@.g., the emergence of car
sition takes place. This phase transition separates the lovglusters in traffic flow out of an initially homogeneous situ-
density situation in which all cars move independently atation is well known in physics. Depending on the system
maximal speed from the high-density region in which theunder consideration and its control parameters the cluster
formation of car aggregates as bound states reduces the d@rmation in a supersaturatgdnstable situation has been
erage velocity of cars. The flux rate is decreasing with in-observed in nuclear physics as well as in other branches. We
creasing car density. In a one-dimensional situatigingle- ~mention the well-known example of condensatifarmation
lane traffig all cars are stopped if the road is crowded with Of liquid dropletg in an undercooled water vapor. The for-
cars (density equals one The curves in the flux-density mation of bound states as an aggregation process is related to
space are known as a fundamental diagram. self-organized phenomef#8,19. Self-organization by non-
Based on several approacHds-6] such as a cellular au- linear irreversible processes is well known not only in phys-
tomaton model for freeway traffic by Nagel and SchreckendiCs but in other branches such as biology and sociology; see,
berg[7] and otherd8-11] the fundamental diagram shows €.9.,[18,20.
clearly the phase transition from the free-jet situati;m ~ Dynamical models for cluster formation based on stochas-
aggregation effegtto the car cluster regime with start-stop tic methods(master equation, Langevin equation, Fokker-
waves. It has been shown by Kerner and Kargea[12,13 Planck equationhave, to our knowledge, not been exploited
that for high densities a car cluster can spontaneously appe&p far in traffic theory. We mention RdfL7] where random-
in which the average velocity of cars is considerably lowerwalk arguments have been used to discuss lifetime distribu-
than in the initial flow and outside the cluster. Surprisingly tions of jams. It is the aim of the present paper to give a
already simple particle hopping models on the basis of ceIStOCh"_jIStIC description of Jam fo.rmz_anon using the master-
lular automata rules can lead to realistic space-time car dyequation approach. The main point is to construct the transi-
namics and fit into the general context of traffic flow theorytion probabilities for the jump processes.
as pointed out by Nagéll4]. This seems to be the case for
both elementary types of lattice rul&single-lane traffic, one
kind of vehicle [7] and more sophisticated varianfsvo- Il. DYNAMICS OF A SPONTANEOUS TRAFFIC JAM
The possible states of a highway traffic at varying densi-
ties are well known; let us briefly discuss them in review. In
*Electronic address: mahnke@darss.mpg.uni-rostock.de contrast to the phase diagram of a van der Waals gas we have
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a gas phasat low densities: the particles are considered to
be noninteractingideal gas flow; an initially homogeneous
flow will remain stable; the flow-density curve in the funda-
mental diagram is linear, whose slope is the mean velocity.
The relationship between mean velocity and density can be
described either by security distancdaw, or by anoptimal
velocity law.
On the other hand, at high densities we find tiygid
phase the particles interact stronglgondensed floyvand an
initially homogeneous flow will also remain stable. The
mean velocity and the flow reduce as the density gets greater,
and reach zero at a finite maximal value for denéis., at a
minimal value for the intervehicle distance
At intermediate densities there is a region of phase sepa-
ration between both stable phases. Since the particles interact
episodically an initially homogeneous flow becomes un-
stable. The birth of one or several aggregates as clustering by
collisions takes place. The car clusters can either disappear
by concurrence or rapidly reach very high local densities and
very low speeds for the trapped vehicles. The clusters as
binding states move backwards with a speed that is directly
dependent on the rate of incoming cars, i.e., the upstream
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flow. The general behavior is an alternation of free and con-
gested areas, often callesop-and-go wavesor stop-start
waves There are two critical densities in the vicinity of
which metastabilities and bifurcations may occur. FIG. 1. Sigmoidal curves for optimal velocity showing the de-
Keeping in mind our goal of building a master equationsired speeddimensionless quantity,y/vmay in dependence of the
that could describe the stochastic evolution of the aggregaieadwayh to the next car.
tion phenomenon, we have now to find a simplified but still
realistic definition for a traffic jam. Since many results, for Simple, but still realistic model, namely,sigmoidal optimal
example[12,13, tell us that, in a new-born jam, the conver- velocity curve. Sigmoidal functions have a characteristic
gence towards very high density and corresponding very lovghape that starts at one value and rises smoothly to another
value with a single inflection point. There are many algebraic

as biological growth laws, only a few of them are encoun-

individual speed is significantly higher than that of tige

of the jam towards its stationary size, we will give the fol- expressions to represent such curves, but in applications such
lowing definition of a car cluster: A cluster of sizeis an

aggregate oh vehicles whose individual speed is zero, andtered frequently{20]. We mention the hyperbolic tangent,

whose front-to-rear(bumper-to-bumpgr distance is zero. Which has been used by Bandbal.[21-23 as the optimal
That we have set the minimal allowed distance between twaelocity curve. We make another choice, sometimes known
vehicles to zero does not reduce generality, since we ca@s the Hill function of second order, analytically written as

consider theeffective lengthof a car as a minimal distance
added to the real length. However, the zero-speed hypothesis h?
is a rough simplification; a useful generalization of this defi- d2+h2’ @)

nition would then be to allow density as an additional vari-
able (besides the sizdor the characterization of the cluster. \\hareh is the headwaybumper-to-bumper with effective

Our definiti_on _of a single jam forming a queue of cars haVingIength), Umax iS the maximal speed allowed, adds a posi-
zero velocity is in agreement with the work of Nagel andyye control parameter, which can be seen as a characteristic
Paczuski[17]. A further simplification performed in this poaqway for the transition between noninteracting and inter-
model is that we will allow only one cluster at a time. Other acting phases.

works[21] have shown that the total number of cars blocked This particular form[Eq. (1)] of the optimal velocity

on the road is practically independent of the number of COturve (Fig. 1) has the advantage of allowing easy analytical

existing clusters, so that our results should not be t0qreaiment for the following developments, and of being con-
sistent with the limitv,,{0)=0; the fact that the upper limit

h— oo is not consistent with the periodic boundaries does not

lll. FOLLOW-THE-LEADER BEHAVIOR appear to be problematic. . . .
Besides the movement with an optimal velocity behavior

In order to allow a description of the homogeneous flowthe car-car interaction has to be considered. In comparison to

behavior, we have to choose a relationship between tha granular particle flow in narrow pipg24] the clustering of

speed of a given vehicle and the distance to its leader. As thigars is driven by inelastic collisions. When two particles col-
particular problem is not the essential point of this paper, andide inelastically (two cars reach each other without acci-

should be further discussed and justified in confrontatiorden, their velocities change so that the faster car adopts the

with experimental data, our choice was that of a sufficientlyvelocity of the slower one, and hence they remain close to

Uopt(h) =~ Umax

strongly affected by this restriction.
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one another. The proposed mechanism for the formation ahodels it is generally assumed, implicitly, that time con-
aggregates allows us to derive a stochastic equation describtants for speeding up and for slowing down are identical, an

ing the creation and evolution of a car cluster of gize assumption that has obviously no reasonable grounds, either
technically or psychologically. We shall on the contrary as-
IV. THE MASTER EQUATION sume thathe braking time constant is much greater than the

accelerating onelndeed, as a driver approaches the rear of

The master equation is a differential equation describinghe jam, he does not realize immediately that he will have to
the time evolution of the probability distribution of a set of come to a real stop, therefore he will use his brakes very late
random variables for a stochastic dynamical sysf2B126  and very strongly. In the opposite case, namely, when the
that follows a Markov process, i.e., for which the transitionqgriver sees again the free flow in front of him, he will have
probabilities depend on the actual state but not on the pagidapted his speed, which is zero at the time, to the mean
states. It is expressed in terms of transition rates between theed of the free flow, after a time that can be approximated
reachable states of the system. Mostly the description of dypy a constant
namical stochastic processes is limited to linear models such As a consequence of these statements, we are able to de-
as one-dimensional birth-death equations or random walkfine the transition rates in a very simple way. Let us discuss
on a line with unknown parametelr85,26,17. Our approach  poth cases separately. Considering the free flow upstream of
to aggregation in freeway traffic requires not only the knowl-the jam, we remember that we assumed it was homogeneous,
edge of all jump processes and their generally nonlinear trangith an average headwdyand speed opth). Attimet, the
sition probabilities but also the knowledge of all parametersar directly behind the jam has to drive a distah¢@nd, if
used in the model. Since such quantities can rarely be deteje take the extreme assumption that the decelerating time
mined from fundamental equations the parameters must bgynstant is zero, it needs an average time,,(h) to get
observable from experimental data. o __into the jam. Hence, the probability, at tine- dt, that the

In our particular case, the only random variable is the siz&ar has collided“jumped” ) into the jam isdtvop(h)/h. The

n of the cluster. We will furthermore accept that only one cariransition rate, which is defined per time unit, will therefore
at a time can go into or come out of the jam; this means thage

we do not consider the merging or splitting of aggregates,

which is a consequence of our choice of a one-cluster sys- vopth)

tem. As a consequence, only two kinds of transitions are W+(h)=T- 3
allowed: a growth transition—n+1 and a decay transition

n—n-—1, to which we associate a growth transition rategp, the other hand, as the head car of the jam can come free

w,, and a decay transition raww_, respectively. These aqain, it will need the average time and hence the corre-
rates depend in general on the variabjehey could also be  sponding transition rate is simply

time dependent if we would consider the possibility of an

external control on thenfe.g., through the action of traffic 1

lights or a temporary adaptation of legal speeticase that w-(h)=—. (4)
will not be treated here but that should be a necessary step

towards practical applications, such as technical or legaow, hased on the conservation law of finite systems that all
measures that can be taken to prevent jamming. We can noWsrs are moving on a street with periodic boundary condi-

write our master equation, tions, with the help of the following easy relation between
9 the headwayh and the size of the cluster,
ZP(nH=w.(n=1p(n—1H+w_(n+1)p(n+11)

h(n)= : (5)
—[w, (n)+w_(n)]p(n,t), 2 N—n

which can be used to determine numerically the temporaivherel is the total length of the road the total number of
evolution of the stochastic variable(t), the probability —cars, and, the effective length of a single car, we finally
p(n,t) to find a sizen jam at timet, the mean value as well find (see Fig. 2 the different forms of the curver, (n) for

as the variance for the random variable and hence the different densitiese=N/L. For w_(n) we still have a
desired evolution of the flow. Nevertheless, in order to deaptraight linew_(n)=w_=1/r=const. The general param-
with this equation, we still need the transition rates, whicheters for the figures are chosen to be realistic enough, but

have to emerge from phenomenological considerations. ~ they are not empirically justified; however, we will see that
these realistic parameters will lead to a realistic flow-density

behavior.

The curves shown in Fig. 2 allow us to describe the dif-

A very important parameter in many highway traffic mod- ferent behaviors connected with different relative values of
els is the relaxation time, which describes the driver’sthe control parameters. The first case to be examined should
technical-psychological fastness of adaptation to the actudle the case where4is bigger than the maximum value for
downstream state of the flow. Associated with an optimaw, , with the conditionr<<2d/v . Since this case leads to
velocity model, it is the time constant for the exponentially a stable homogeneous flow for the whole range of densities;
asymptotic adaptation from his actual speed to the optimahowever, for realistic values of parameters, for example,
speed required for his actual headway. However, in thesd=20 m,v =40 m/s, this situation will not occur, as the

V. RELAXATION TIMES AND TRANSITION RATES
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FIG. 2. Analytical curves for the transition ratédecay rate: FIG. 3. Examples of flow-density curves obtained. The com-

horizontal line; growth rates: curves for undercritical, overcritical puted fundamental diagram shows the validity of our approach and
and very high densitiggor three different regimes. The parameters agrees with measured data curves.
ared=20 M, v =40 M/s,1;=8 m, 7=7 s,L=5000 m.

. . see also the influence of the paramatewhich can be seen
time constant should be less than 1 s. For the opposite Casg, e “range” of the interaction, and of the parameier
the density range appears to be divided into three parts b\X/hich is the size of the “particle

two critical values. Below the lower critical value, the grow- '

ing transition will always be less probable than the decay

transition, and hence any initial perturbation will disappear.

Here we find again that for low densities, the homogeneous V1. JAM DYNAMICS: ANALYTICAL

flow is stable. For intermediate densities, we find one equi- AND NUMERICAL RESULTS
librium - size, corresponding to the intersection point The master equatiori2), with its associated transition

w+_(n)=w, , Which is astables_tationary size of _the clusyer. rates given by Eqs(3) and (4), with the help of Eq.(5),

This means that, after a Iong time, the system is a Stat'.onargllows us to calculate analytically and numerically the time
tvlvo-phase systegw, ?(S deds C”?]ed b% sevEraI authors, W']EIh the(?/olution for the mean value of the size, as well as of its
cluster moving backwards through a homogeneous flow:. " . ' ; X
Now, for high densities, there ateo equilibrium sizes, the }’a”g.?fe' for d:fferen; Shetstf p_ararlnete;s, andf_md particular
greater one being stable and the smaller one being unstabllé);[r. Ifferent values of the density. In order to find an ana-
thus, for initially homogeneous or slightly perturbed flows, ytical iaxeressmn foiihe time evolutian of'the mean value
in other words, if the initial size of the perturbation is |eSS<n>(t)_En=On p(n,t) fro.m th'e master equatiof), we hgve
than the unstable critical size, the perturbation will disapt0 Perform the approximatiow . (n))=w. ((n)), which
pear: we then find the homogeneous congested flow dd€ads to the following form:

scribed in general highway measurements. On the other

hand, if the initial cluster is bigger than this critical size, its

size will increase even more, until it reaches the stable sta- E(n)zw (<n>)—£ 6)
tionary value. This behavior at high densities can be seen as dt * T’

a metastability of the homogeneous flow, since it needs a

minimal perturbation to get unstable.

From the knowledge of equlibrium cluster sizes in depenwith stationary solutions of the mean car cluster size

dence of the density, we can already calculate analytically

the mean value of the general flow at all densities. In other

words we can find thédundamental diagramas plotted in
Fig. 3, as a first test of the validity of our model. We see that

L/IO_N
the shape is like most analytical and empirical curves. We

N)sta= N—
(M)sta Vmax™2l 0% V(0 max/210)* = (d/1)?

)
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FIG. 4. Examples of stochastic trajectories as solutions of the |G, 5. Stochastic trajectories starting with critical initial size

master equation for iptermediate densitizsm bottom to top the (unstable cluster sizeat a very high density 0.68otal number of
total number of cars increasés=24,100,200) compared with nu-  c5rsN=480) together with the mean value.

merical solutions for the mean cluster size and its variance.

dimensional master equation. By focusing on the jamming

tion (6) correctly describes the dynamics of the system aﬁhenomenon and on its essentially stochastlt_: properties, we
o L . . ave been able to describe the general behavior of the system
far-from-critical densities, and have basically the right sta

. ; . : . very realistically under very simple hypotheses and with
tionary solutions. In parallel to this, we simulate particular ! .

! . . : ) . very small computing power. In particular, our fundamental
stochastic trajectories, which are in accordance with the re

sults computed from the derived master equatgee Figs. 4 _dlagram(F|g. 3 shows its hgbltyal shape. Of course, many
and 5. improvements and generalizations are possible and neces-

For far-from-critical densities, the evolution is quasideter_sary. In particular, a more subtle definition of the car cluster

ministic and the fluctuations are small. On the other hand(Cf‘ Sec. 1) would be .helpful n _descrl_bmg the behavior of
the system at very high densitiésf. discussion at end of

the high density trajectories show the bifurcation at a highSec VI, but also at low densities—since in that case we do
density around the critical initial jam size. The initially inho- not éxpéct the cars to come to a real stop by agglomerating

mogeneous flow can have a long lifetime, and then bifurcatei_ o " . .
. . . he decay transition probabiliffeq. (4)] could be defined in
either into a homogeneous congested flaw{0), or into a a more precise way, and in particular should be density de-

stable state where. many cars are blocked into a Jagt])endent. The parametrization should be investigated and
(n—ngape. For realistic values of the parameters, we se

that this big cluster contains almost all the cars. As a resulquantitative results compared with real life. Allowing coex-
if we take i?l'[O account the fluctuations of the s s'tem we car.1Stence of several clusters and overtakinghich could be
see that both final states are equivalent Indee)clzl in tr71e homd-One using an analogy with tunnel effgcexamining the

eneous flow. the cars move ;gt a ver .Iow S eéd and Cou;‘Pnfluence of traffic lights(which create traffic jams artifi-
ge considered—with a less restrictive )(;efiniti(fn thén ours for((:jl ally) and of crossroadswhich create jams by external sto-
: X ; chastical processshould be the first steps to generalization
the cluster(cf. Sec. 1), allowing nonzero particle velocity— L

R ; ...and applications.

being inside a jam that covers the road completely, with
fluctuations around homogeneity. These fluctuations could
be analyzed, for example, as the propagation of “holes”

(free spacesin a homogeneous mediurfsee also[27]). ACKNOWLEDGMENTS
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in the range of heavy traffic with overcritical densities. Equa-



56 STOCHASTIC MASTER-EQUATION APPROACH TO ... 2671

[2] I. Prigogine and R. HermatElsevier, New York, 1971 [15] O. Biham, A. A. Middleton, and D. Levine, Phys. Rev.4B,
[2] M. Cremer, Der Verkehrsflg auf Schnellstrg@en (Springer, R6124(1992.
Berlin, 1979. [16] T. Nagatani, Physica 218 145(1995.
[3] D. Helbig, Verkehrsdynamik: Neue physikalische Model- [17] K. Nagel and M. Paczuski, Phys. Rev.5, 2909(1995.
lierungskonzeptéSpringer, Berlin, 1997 [18] R. Mahnke, J. Schmelzer, and G. ke, Nichtlineare Pha

[4] W. LeutzbachEinfihrung in die Theorie des Verkehrsflusses ~ nhomene und Selbstorganisatiofieubner, Stuttgart, 1992
(Springer, Berlin, 1972 Introduction to the Theory of Traffic [19] R. Mahnke and M. Seemann, ifraffic and Granular Flow
Flow (Springer, Berlin, 1988 (Ref.[6]), p. 323. _ _ _

[5] G. B. Whitham,Linear and Nonlinear Waveglohn Wiley & [20] D. Kaplan and L. GlasgJnderstanding Nonlinear Dynamics
Sons, New York, 1974 (Springer, New York, 1995 .

[6] Traffic and Granular Flowedited by D. E. Wolf, M. Schreck- [21] M Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sug-
enberg, and A. BachertWorld Scientific, Singapore, 1996 lyama, Jpn. J. Indust. Appl. Mathi1, 203 (1994,

[22] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sug-
[7] K. Nagel and M. Schreckenberg, J. PhygFtance 2, 2221 iyama, Phys. Rev. 51, 1035(1995.

(1992. ) ) [23] M. Bando, K. Hasebe, K. Nakanishi, A. Nakayama, A. Shi-
(8] H. Emmerich and E. Rank, Physica216, 435(1993. bata, and Y. Sugiyama, J. Phys(Arance 5, 1389(1995.
(o] T. Nagatani, Physica 223 137 (1996. [24] T. Riethmidler, L. Schimansky-Geier, D. Rosenkranz, and Th.
[10] M. Rickert, K. Nagel, M. Schreckenberg, and A. Latour, Peschel, J. Stat. Phy86, 421 (1997).

Physica A231, 534(1996. [25] C. W. Gardiner,Handbook of Stochastic MethodSpringer,
[11] M. Schreckenberg, A. Schadschneider, K. Nagel, and N. Ito,  New York, 1983.

Phys. Rev. E51, 2939(1995. [26] J. Honerkamp, Stochastische Dynamische SysteWCH,
[12] B. S. Kerner and P. Konhaer, Phys. Rev. E8, R2335 Weinheim, 199 Stochastic Dynamical Systerd¢CH, New

(1993. York, 1994.

[13] B. S. Kerner and P. Konhger, Phys. Rev. B0, 54 (1994). [27] S. Migowsky, T. Wanschura, and P. Rujan, Z. Phy@3407
[14] K. Nagel, Phys. Rev. B3, 4655(1996. (1994.



