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Stochastic master-equation approach to aggregation in freeway traffic
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~Received 3 March 1997!

In analogy to the usual aggregation phenomena, such as the formation of liquid droplets in a supersaturated
vapor, the nucleation, growth, and condensation of car clusters are considered in a one-lane freeway traffic flow
model. The clustering behavior~known as congestion! in an initially homogeneous traffic stream is described
by a master equation. The construction of the stochastic equation is given as well as its relationship to other
dynamical models. Numerical experiments in heavy traffic with well-explained transition probabilities show
the transition from the initial free particle situation~free jet of vehicles! to the final congested cluster state,
where one big aggregate of cars is formed. The results are presented analytically in dependence of the stable
cluster size from car concentration and numerically as stochastic trajectories.@S1063-651X~97!05109-X#

PACS number~s!: 02.50.Ey, 05.70.Fh, 89.40.1k
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I. INTRODUCTION

Fluid-dynamical approaches to traffic flow were dev
oped long ago starting in the 1950s by Lighthill an
Whitham. Since the pioneering work of Prigogine and H
man @1# on the kinetic theory of vehicular traffic, cars hav
been considered as interacting particles. Depending on
number of cars on the road~the density of cars! bound states
~so-called car clusters! may become possible. If the density
small the free flow of nearly noninteracting particles is dom
nant. The flux rate increases linearly with the density. If
density of cars exceeds some critical value a jamming tr
sition takes place. This phase transition separates the
density situation in which all cars move independently
maximal speed from the high-density region in which t
formation of car aggregates as bound states reduces th
erage velocity of cars. The flux rate is decreasing with
creasing car density. In a one-dimensional situation~single-
lane traffic! all cars are stopped if the road is crowded w
cars ~density equals one!. The curves in the flux-density
space are known as a fundamental diagram.

Based on several approaches@1–6# such as a cellular au
tomaton model for freeway traffic by Nagel and Schreck
berg @7# and others@8–11# the fundamental diagram show
clearly the phase transition from the free-jet situation~no
aggregation effect! to the car cluster regime with start-sto
waves. It has been shown by Kerner and Konha¨user@12,13#
that for high densities a car cluster can spontaneously ap
in which the average velocity of cars is considerably low
than in the initial flow and outside the cluster. Surprising
already simple particle hopping models on the basis of
lular automata rules can lead to realistic space-time car
namics and fit into the general context of traffic flow theo
as pointed out by Nagel@14#. This seems to be the case f
both elementary types of lattice rules~single-lane traffic, one
kind of vehicle! @7# and more sophisticated variants~two-
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lane traffic with lane changing, different kinds of vehicle!
@10#. A description in terms of lattice rules also permits
discussion of critical phenomena of traffic-jam formatio
The system self-organizes in such a way that the outfl
from a large car cluster is a critical state of maximu
throughput. Numerical results and phenomelogical the
based on random walks show that slow perturbations in
outflow of a big car cluster lead downstream to traffic jam
of all sizes. The creation of emergent car clusters in a driv
randomly perturbed system is a particulary good example
criticality @15–17#.

The aggregation of particles~e.g., the emergence of ca
clusters in traffic flow! out of an initially homogeneous situ
ation is well known in physics. Depending on the syste
under consideration and its control parameters the clu
formation in a supersaturated~unstable! situation has been
observed in nuclear physics as well as in other branches.
mention the well-known example of condensation~formation
of liquid droplets! in an undercooled water vapor. The fo
mation of bound states as an aggregation process is relat
self-organized phenomena@18,19#. Self-organization by non-
linear irreversible processes is well known not only in phy
ics but in other branches such as biology and sociology;
e.g.,@18,20#.

Dynamical models for cluster formation based on stoch
tic methods~master equation, Langevin equation, Fokke
Planck equation! have, to our knowledge, not been exploite
so far in traffic theory. We mention Ref.@17# where random-
walk arguments have been used to discuss lifetime distr
tions of jams. It is the aim of the present paper to give
stochastic description of jam formation using the mast
equation approach. The main point is to construct the tra
tion probabilities for the jump processes.

II. DYNAMICS OF A SPONTANEOUS TRAFFIC JAM

The possible states of a highway traffic at varying den
ties are well known; let us briefly discuss them in review.
contrast to the phase diagram of a van der Waals gas we
2666 © 1997 The American Physical Society
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56 2667STOCHASTIC MASTER-EQUATION APPROACH TO . . .
a gas phaseat low densities: the particles are considered
be noninteracting~ideal gas flow!; an initially homogeneous
flow will remain stable; the flow-density curve in the fund
mental diagram is linear, whose slope is the mean veloc
The relationship between mean velocity and density can
described either by asecurity distancelaw, or by anoptimal
velocity law.

On the other hand, at high densities we find theliquid
phase: the particles interact strongly~condensed flow! and an
initially homogeneous flow will also remain stable. Th
mean velocity and the flow reduce as the density gets gre
and reach zero at a finite maximal value for density~i.e., at a
minimal value for the intervehicle distance!.

At intermediate densities there is a region of phase se
ration between both stable phases. Since the particles int
episodically an initially homogeneous flow becomes u
stable. The birth of one or several aggregates as clusterin
collisions takes place. The car clusters can either disap
by concurrence or rapidly reach very high local densities
very low speeds for the trapped vehicles. The clusters
binding states move backwards with a speed that is dire
dependent on the rate of incoming cars, i.e., the upstr
flow. The general behavior is an alternation of free and c
gested areas, often calledstop-and-go waves, or stop-start
waves. There are two critical densities in the vicinity o
which metastabilities and bifurcations may occur.

Keeping in mind our goal of building a master equati
that could describe the stochastic evolution of the aggre
tion phenomenon, we have now to find a simplified but s
realistic definition for a traffic jam. Since many results, f
example@12,13#, tell us that, in a new-born jam, the conve
gence towards very high density and corresponding very
individual speed is significantly higher than that of thesize
of the jam towards its stationary size, we will give the fo
lowing definition of a car cluster: A cluster of sizen is an
aggregate ofn vehicles whose individual speed is zero, a
whose front-to-rear~bumper-to-bumper! distance is zero.
That we have set the minimal allowed distance between
vehicles to zero does not reduce generality, since we
consider theeffective lengthof a car as a minimal distanc
added to the real length. However, the zero-speed hypoth
is a rough simplification; a useful generalization of this de
nition would then be to allow density as an additional va
able~besides the size! for the characterization of the cluste
Our definition of a single jam forming a queue of cars hav
zero velocity is in agreement with the work of Nagel a
Paczuski@17#. A further simplification performed in this
model is that we will allow only one cluster at a time. Oth
works @21# have shown that the total number of cars block
on the road is practically independent of the number of
existing clusters, so that our results should not be
strongly affected by this restriction.

III. FOLLOW-THE-LEADER BEHAVIOR

In order to allow a description of the homogeneous fl
behavior, we have to choose a relationship between
speed of a given vehicle and the distance to its leader. As
particular problem is not the essential point of this paper,
should be further discussed and justified in confrontat
with experimental data, our choice was that of a sufficien
o
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simple, but still realistic model, namely, asigmoidal optimal
velocity curve. Sigmoidal functions have a characteris
shape that starts at one value and rises smoothly to ano
value with a single inflection point. There are many algebr
expressions to represent such curves, but in applications
as biological growth laws, only a few of them are encou
tered frequently@20#. We mention the hyperbolic tangen
which has been used by Bandoet al. @21–23# as the optimal
velocity curve. We make another choice, sometimes kno
as the Hill function of second order, analytically written a

vopt~h!5vmax

h2

d21h2
, ~1!

where h is the headway~bumper-to-bumper with effective
length!, vmax is the maximal speed allowed, andd is a posi-
tive control parameter, which can be seen as a character
headway for the transition between noninteracting and in
acting phases.

This particular form@Eq. ~1!# of the optimal velocity
curve ~Fig. 1! has the advantage of allowing easy analytic
treatment for the following developments, and of being co
sistent with the limitvopt(0)50; the fact that the upper limi
h→` is not consistent with the periodic boundaries does
appear to be problematic.

Besides the movement with an optimal velocity behav
the car-car interaction has to be considered. In compariso
a granular particle flow in narrow pipes@24# the clustering of
cars is driven by inelastic collisions. When two particles c
lide inelastically ~two cars reach each other without acc
dent!, their velocities change so that the faster car adopts
velocity of the slower one, and hence they remain close

FIG. 1. Sigmoidal curves for optimal velocity showing the d
sired speed~dimensionless quantityvopt /vmax) in dependence of the
headwayh to the next car.
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2668 56R. MAHNKE AND N. PIERET
one another. The proposed mechanism for the formatio
aggregates allows us to derive a stochastic equation des
ing the creation and evolution of a car cluster of sizen.

IV. THE MASTER EQUATION

The master equation is a differential equation describ
the time evolution of the probability distribution of a set
random variables for a stochastic dynamical system@25,26#
that follows a Markov process, i.e., for which the transiti
probabilities depend on the actual state but not on the
states. It is expressed in terms of transition rates between
reachable states of the system. Mostly the description of
namical stochastic processes is limited to linear models s
as one-dimensional birth-death equations or random w
on a line with unknown parameters@25,26,17#. Our approach
to aggregation in freeway traffic requires not only the know
edge of all jump processes and their generally nonlinear t
sition probabilities but also the knowledge of all paramet
used in the model. Since such quantities can rarely be de
mined from fundamental equations the parameters mus
observable from experimental data.

In our particular case, the only random variable is the s
n of the cluster. We will furthermore accept that only one c
at a time can go into or come out of the jam; this means
we do not consider the merging or splitting of aggregat
which is a consequence of our choice of a one-cluster
tem. As a consequence, only two kinds of transitions
allowed: a growth transitionn→n11 and a decay transition
n→n21, to which we associate a growth transition ra
w1 , and a decay transition ratew2, respectively. These
rates depend in general on the variablen; they could also be
time dependent if we would consider the possibility of
external control on them~e.g., through the action of traffic
lights or a temporary adaptation of legal speed!, a case that
will not be treated here but that should be a necessary
towards practical applications, such as technical or le
measures that can be taken to prevent jamming. We can
write our master equation,

]

]t
p~n,t !5w1~n21!p~n21,t !1w2~n11!p~n11,t !

2@w1~n!1w2~n!#p~n,t !, ~2!

which can be used to determine numerically the tempo
evolution of the stochastic variablen(t), the probability
p(n,t) to find a size-n jam at timet, the mean value as we
as the variance for the random variablen, and hence the
desired evolution of the flow. Nevertheless, in order to d
with this equation, we still need the transition rates, wh
have to emerge from phenomenological considerations.

V. RELAXATION TIMES AND TRANSITION RATES

A very important parameter in many highway traffic mo
els is the relaxation time, which describes the drive
technical-psychological fastness of adaptation to the ac
downstream state of the flow. Associated with an optim
velocity model, it is the time constant for the exponentia
asymptotic adaptation from his actual speed to the opti
speed required for his actual headway. However, in th
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models it is generally assumed, implicitly, that time co
stants for speeding up and for slowing down are identical,
assumption that has obviously no reasonable grounds, e
technically or psychologically. We shall on the contrary a
sume thatthe braking time constant is much greater than t
accelerating one. Indeed, as a driver approaches the rear
the jam, he does not realize immediately that he will have
come to a real stop, therefore he will use his brakes very
and very strongly. In the opposite case, namely, when
driver sees again the free flow in front of him, he will hav
adapted his speed, which is zero at the time, to the m
speed of the free flow, after a time that can be approxima
by a constant.

As a consequence of these statements, we are able to
fine the transition rates in a very simple way. Let us disc
both cases separately. Considering the free flow upstrea
the jam, we remember that we assumed it was homogene
with an average headwayh and speedvopt(h). At time t, the
car directly behind the jam has to drive a distanceh, and, if
we take the extreme assumption that the decelerating
constant is zero, it needs an average timeh/vopt(h) to get
into the jam. Hence, the probability, at timet1dt, that the
car has collided~‘‘jumped’’ ! into the jam isdtvopt(h)/h. The
transition rate, which is defined per time unit, will therefo
be

w1~h!5
vopt~h!

h
. ~3!

On the other hand, as the head car of the jam can come
again, it will need the average timet, and hence the corre
sponding transition rate is simply

w2~h!5
1

t
. ~4!

Now, based on the conservation law of finite systems tha
cars are moving on a street with periodic boundary con
tions, with the help of the following easy relation betwe
the headwayh and the size of the clustern,

h~n!5
L2Nl0
N2n

, ~5!

whereL is the total length of the road,N the total number of
cars, andl 0 the effective length of a single car, we finall
find ~see Fig. 2! the different forms of the curvew1(n) for
different densities%5N/L. For w2(n) we still have a
straight linew2(n)5w251/t5const. The general param
eters for the figures are chosen to be realistic enough,
they are not empirically justified; however, we will see th
these realistic parameters will lead to a realistic flow-dens
behavior.

The curves shown in Fig. 2 allow us to describe the d
ferent behaviors connected with different relative values
the control parameters. The first case to be examined sh
be the case where 1/t is bigger than the maximum value fo
w1 , with the conditiont,2d/vmax, since this case leads t
a stable homogeneous flow for the whole range of densit
however, for realistic values of parameters, for examp
d520 m,vmax540 m/s, this situation will not occur, as th
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56 2669STOCHASTIC MASTER-EQUATION APPROACH TO . . .
time constant should be less than 1 s. For the opposite c
the density range appears to be divided into three parts
two critical values. Below the lower critical value, the grow
ing transition will always be less probable than the dec
transition, and hence any initial perturbation will disappe
Here we find again that for low densities, the homogene
flow is stable. For intermediate densities, we find one eq
librium size, corresponding to the intersection po
w1(n)5w2 , which is astablestationary size of the cluster
This means that, after a long time, the system is a station
two-phase system, as described by several authors, with
cluster moving backwards through a homogeneous fl
Now, for high densities, there aretwo equilibrium sizes, the
greater one being stable and the smaller one being unst
thus, for initially homogeneous or slightly perturbed flow
in other words, if the initial size of the perturbation is le
than the unstable critical size, the perturbation will disa
pear; we then find the homogeneous congested flow
scribed in general highway measurements. On the o
hand, if the initial cluster is bigger than this critical size,
size will increase even more, until it reaches the stable
tionary value. This behavior at high densities can be see
a metastability of the homogeneous flow, since it need
minimal perturbation to get unstable.

From the knowledge of equlibrium cluster sizes in dep
dence of the density, we can already calculate analytic
the mean value of the general flow at all densities. In ot
words we can find thefundamental diagram, as plotted in
Fig. 3, as a first test of the validity of our model. We see t
the shape is like most analytical and empirical curves.

FIG. 2. Analytical curves for the transition rates~decay rate:
horizontal line; growth rates: curves for undercritical, overcritic
and very high densities! for three different regimes. The paramete
ared520 m,vmax540 m/s,l 058 m, t57 s,L55000 m.
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see also the influence of the parameterd, which can be seen
as the ‘‘range’’ of the interaction, and of the parameterl 0,
which is the size of the ‘‘particle.’’

VI. JAM DYNAMICS: ANALYTICAL
AND NUMERICAL RESULTS

The master equation~2!, with its associated transition
rates given by Eqs.~3! and ~4!, with the help of Eq.~5!,
allows us to calculate analytically and numerically the tim
evolution for the mean value of the size, as well as of
variance, for different sets of parameters, and in particu
for different values of the density. In order to find an an
lytical expression for the time evolution of the mean val
^n&(t)5(n50

N np(n,t) from the master equation~2!, we have
to perform the approximation̂w1(n)&.w1(^n&), which
leads to the following form:

d

dt
^n&.w1~^n&!2

1

t
, ~6!

with stationary solutions of the mean car cluster size

^n&stat5N2
L/ l 02N

vmaxt/2l 06A~vmaxt/2l 0!22~d/ l 0!2
~7!

l
FIG. 3. Examples of flow-density curves obtained. The co

puted fundamental diagram shows the validity of our approach
agrees with measured data curves.
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2670 56R. MAHNKE AND N. PIERET
in the range of heavy traffic with overcritical densities. Equ
tion ~6! correctly describes the dynamics of the system
far-from-critical densities, and have basically the right
tionary solutions. In parallel to this, we simulate particu
stochastic trajectories, which are in accordance with the
sults computed from the derived master equation~see Figs. 4
and 5!.

For far-from-critical densities, the evolution is quasidet
ministic and the fluctuations are small. On the other ha
the high density trajectories show the bifurcation at a h
density around the critical initial jam size. The initially inho
mogeneous flow can have a long lifetime, and then bifurc
either into a homogeneous congested flow (n→0), or into a
stable state where many cars are blocked into a
(n→nstable). For realistic values of the parameters, we s
that this big cluster contains almost all the cars. As a res
if we take into account the fluctuations of the system, we
see that both final states are equivalent. Indeed, in the ho
geneous flow, the cars move at a very low speed, and c
be considered—with a less restrictive definition than ours
the cluster~cf. Sec. II!, allowing nonzero particle velocity—
being inside a jam that covers the road completely, w
fluctuations around homogeneity. These fluctuations co
be analyzed, for example, as the propagation of ‘‘hole
~free spaces! in a homogeneous medium~see also@27#!.
However, these holes do not describe a discrete sys
anymore—having no finite fixed size—and therefore do
allow for symmetry between very high and very low den
ties.

VII. CONCLUSIONS

In conclusion we emphasize that the model described
this paper is an approach to traffic problems based on a

FIG. 4. Examples of stochastic trajectories as solutions of
master equation for intermediate densities~from bottom to top the
total number of cars increasesN524,100,200) compared with nu
merical solutions for the mean cluster size and its variance.
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dimensional master equation. By focusing on the jamm
phenomenon and on its essentially stochastic properties
have been able to describe the general behavior of the sy
very realistically under very simple hypotheses and w
very small computing power. In particular, our fundamen
diagram~Fig. 3! shows its habitual shape. Of course, ma
improvements and generalizations are possible and ne
sary. In particular, a more subtle definition of the car clus
~cf. Sec. II! would be helpful in describing the behavior o
the system at very high densities~cf. discussion at end o
Sec. VI!, but also at low densities—since in that case we
not expect the cars to come to a real stop by agglomerat
The decay transition probability@Eq. ~4!# could be defined in
a more precise way, and in particular should be density
pendent. The parametrization should be investigated
quantitative results compared with real life. Allowing coe
istence of several clusters and overtaking~which could be
done using an analogy with tunnel effect!, examining the
influence of traffic lights~which create traffic jams artifi-
cially! and of crossroads~which create jams by external sto
chastical process! should be the first steps to generalizati
and applications.

ACKNOWLEDGMENTS

One of us~N.P.! thanks M. Ausloos~Universitéde Liège!
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FIG. 5. Stochastic trajectories starting with critical initial siz
~unstable cluster size! at a very high density 0.68~total number of
carsN5480) together with the mean value.
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